Antarctic Extremophiles: Biotechnological Alternative to Crop Productivity in Saline Soils

Salinization of soils is one of the main sources of soil degradation worldwide, particularly in arid and semiarid ecosystems. High salinity results in osmotic stress and it can negatively impact plant grow and survival. Some plant species, however, can tolerate salinity by accumulating osmolytes lik...

Full description

Bibliographic Details
Published in:Frontiers in Bioengineering and Biotechnology
Main Authors: Ian S. Acuña-Rodríguez, Hermann Hansen, Jorge Gallardo-Cerda, Cristian Atala, Marco A. Molina-Montenegro
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2019
Subjects:
Online Access:https://doi.org/10.3389/fbioe.2019.00022
https://doaj.org/article/b864fc2ad21e4d339f383e3a3ac3bf74
Description
Summary:Salinization of soils is one of the main sources of soil degradation worldwide, particularly in arid and semiarid ecosystems. High salinity results in osmotic stress and it can negatively impact plant grow and survival. Some plant species, however, can tolerate salinity by accumulating osmolytes like proline and maintaining low Na+ concentrations inside the cells. Another mechanism of saline stress tolerance is the association with symbiotic microorganism, an alternative that can be used as a biotechnological tool in susceptible crops. From the immense diversity of plant symbionts, those found in extreme environments such as Antarctica seems to be the ones with most potential since they (and their host) evolved in harsh and stressful conditions. We evaluated the effect of the inoculation with a consortium of plant growth-promoting rhizobacteria (PGPB) and endosymbiotic fungi isolated from an Antarctic plant on saline stress tolerance in different crops. To test this we established 4 treatments: (i) uninoculated plants with no saline stress, (ii) uninoculated plants subjected to saline stress (200 mM NaCl), (iii) plants inoculated with the microorganism consortium with no saline stress, and (iv) inoculated plants subjected to saline stress. First, we assessed the effect of symbiont consortium on survival of four different crops (cayenne, lettuce, onion, and tomato) in order to obtain a more generalized response of this biological interaction. Second, in order to deeply the mechanisms involved in salt tolerance, in lettuce plants we measured the ecophysiological performance (Fv/Fm) and lipid peroxidation to estimate the impact of saline stress on plants. We also measured proline accumulation and NHX1 antiporter gene expression (involved in Na+ detoxification) to search for possible mechanism of stress tolerance. Additionally, root, shoot, and total biomass was also obtained as an indicator of productivity. Overall, plants inoculated with microorganisms from Antarctica increased the fitness related traits in ...