Pathogenic Rickettsia, Anaplasma, and Ehrlichia in Rhipicephalus microplus ticks collected from cattle and laboratory hatched tick larvae.

Background The order Rickettsiales contains a group of vector-borne gram-negative obligate intracellular bacteria, which often cause human emerging infectious diseases and economic losses for dairy and meat industries. The purpose of this study is to investigate the distribution of the pathogens inc...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Jiao Xu, Xiao-Lan Gu, Ze-Zheng Jiang, Xiao-Qian Cao, Rui Wang, Qiu-Ming Peng, Ze-Min Li, Li Zhang, Chuan-Min Zhou, Xiang-Rong Qin, Xue-Jie Yu
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2023
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0011546
https://doaj.org/article/b510c6435b7d4060af59c70458d56b12
Description
Summary:Background The order Rickettsiales contains a group of vector-borne gram-negative obligate intracellular bacteria, which often cause human emerging infectious diseases and economic losses for dairy and meat industries. The purpose of this study is to investigate the distribution of the pathogens including Rickettsia spp., Anaplasma spp., and Ehrlichia spp. in the order Rickettsiales in ticks from Yueyang, a prefecture-level city of Hunan Province in Sothern China, and assess the potentiality of transovarial transmission of these rickettsial organisms. Methods Ticks were collected from cattle in a farm in Yueyang City and the tick DNA was used as template to amplify the htrA, rrs, gltA, ompA and ompB genes of Rickettsia as well as rrs and groEL genes of Anaplasma and Ehrlichia. Results All ticks (465) collected were the cattle tick, Rhipicephalus microplus. PCR showed the minimum infection rate (MIR) was 1.5% (7/465) for Candidatus Rickettsia xinyangensis, 1.9% (9/465) for C. Anaplasma boleense, 1.3% (6/465) for Anaplasma platys, 0.6% (3/465) for A. marginale, and 1.17% (2/465) for each of A. bovis, Ehrlichia minasensis, and a non-classified Ehrlichia sp. A human pathogen, C. Rickettsia xinyangensis and A. platys were detected in 100% (3/3) and 33.3% (2/6) laboratory-hatched larval pools from infected females respectively. Conclusion Our study revealed a diversity of pathogenic rickettsial species in R. microplus ticks from Hunan Province suggesting a threat to people and animals in China. This study also provided the first molecular evidence for the potential transovarial transmission of C. Rickettsia xinyangensis and A. platys in R. microplus, indicating that R. microplus may act as the host of these two pathogens.