The results of physical simulation of thermoabrasion bank collapse of arctic water bodies РЕЗУЛЬТАТЫ ФИЗИЧЕСКОГО МОДЕЛИРОВАНИЯ ОБРУШЕНИЯ ТЕРМОАБРАЗИОННЫХ БЕРЕГОВ АРКТИЧЕСКИХ ВОДОЕМОВ

Process of downfall of frozen ground overhanging above a thermoabrasion cave under its own mass forms the cycle of thermoabrasive destruction of sea shores and reservoir banks in the cryolite zone. Russian and foreign papers on arctic coastal dynamics merely state the existence of thermoabrasion cav...

Full description

Bibliographic Details
Main Author: Sobol Ilya Stanislavovich
Format: Article in Journal/Newspaper
Language:English
Russian
Published: Moscow State University of Civil Engineering (MGSU) 2013
Subjects:
Online Access:https://doaj.org/article/b4aa7d9d3eca475d99864efaca338956
Description
Summary:Process of downfall of frozen ground overhanging above a thermoabrasion cave under its own mass forms the cycle of thermoabrasive destruction of sea shores and reservoir banks in the cryolite zone. Russian and foreign papers on arctic coastal dynamics merely state the existence of thermoabrasion caves, but quantitative measurements of the collapsed frozen ground overhanging the caves have never been done. It is difficult to measure parameters of this process under natural conditions, therefore, physical tests were carried out. Testing was performed at freezing air temperatures and comprise several steps. Blocks of frozen ground were manufactured in forming boxes. Blocks were placed in a cartridge on a table, a console imitating frozen ground overhanging a cave was pulled out, a load was applied. Moments of load application and the console failure were registered. In this way there were tested 24 blocks with various length of console of loam, sand, and pebble. Presented are test results and physical properties of the frozen soils under investigation, graphs of their breaking strength plotted on the basis of test data. The simulation has revealed the following: console failure is caused by the rupture of frozen ground along a surface which is almost vertical; breaking strength value at the moment of the console failure is smaller than that at the uniaxial tension of frozen soils, but this difference is negligible for engineering calculations; coarse frozen ground (pebble) shows lower breaking strength as compared with fine one (sand); when the thermoabrasion caves in the shores are formed quickly (during a few hours of storm), the probability of overhanging ground failure should be evaluated by the value of frozen ground breaking strength, which is intermediate between the instantaneous and prolonged strength values. The obtained data may be used in engineering calculations of arctic thermoabrasion shore downfall. Представлены опытные данные о длительном сопротивлении разрыву мерзлых грунтов в условиях обрушения ...