Satellite-based evaluation of AeroCom model bias in biomass burning regions

Global models are widely used to simulate biomass burning aerosol (BBA). Exhaustive evaluations on model representation of aerosol distributions and properties are fundamental to assess health and climate impacts of BBA. Here we conducted a comprehensive comparison of Aerosol Comparisons between Obs...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Q. Zhong, N. Schutgens, G. van der Werf, T. van Noije, K. Tsigaridis, S. E. Bauer, T. Mielonen, A. Kirkevåg, Ø. Seland, H. Kokkola, R. Checa-Garcia, D. Neubauer, Z. Kipling, H. Matsui, P. Ginoux, T. Takemura, P. Le Sager, S. Rémy, H. Bian, M. Chin, K. Zhang, J. Zhu, S. G. Tsyro, G. Curci, A. Protonotariou, B. Johnson, J. E. Penner, N. Bellouin, R. B. Skeie, G. Myhre
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://doi.org/10.5194/acp-22-11009-2022
https://doaj.org/article/b3723aecf29f4bfe9bef6e57f1608660
Description
Summary:Global models are widely used to simulate biomass burning aerosol (BBA). Exhaustive evaluations on model representation of aerosol distributions and properties are fundamental to assess health and climate impacts of BBA. Here we conducted a comprehensive comparison of Aerosol Comparisons between Observations and Models (AeroCom) project model simulations with satellite observations. A total of 59 runs by 18 models from three AeroCom Phase-III experiments (i.e., biomass burning emissions, CTRL16, and CTRL19) and 14 satellite products of aerosols were used in the study. Aerosol optical depth (AOD) at 550 nm was investigated during the fire season over three key fire regions reflecting different fire dynamics (i.e., deforestation-dominated Amazon, Southern Hemisphere Africa where savannas are the key source of emissions, and boreal forest burning in boreal North America). The 14 satellite products were first evaluated against AErosol RObotic NETwork (AERONET) observations, with large uncertainties found. But these uncertainties had small impacts on the model evaluation that was dominated by modeling bias. Through a comparison with Polarization and Directionality of the Earth’s Reflectances measurements with the Generalized Retrieval of Aerosol and Surface Properties algorithm (POLDER-GRASP), we found that the modeled AOD values were biased by −93 % to 152 %, with most models showing significant underestimations even for the state-of-the-art aerosol modeling techniques (i.e., CTRL19). By scaling up BBA emissions, the negative biases in modeled AOD were significantly mitigated, although it yielded only negligible improvements in the correlation between models and observations, and the spatial and temporal variations in AOD biases did not change much. For models in CTRL16 and CTRL19, the large diversity in modeled AOD was in almost equal measures caused by diversity in emissions, lifetime, and the mass extinction coefficient (MEC). We found that in the AeroCom ensemble, BBA lifetime correlated significantly with ...