Combining “Deep Learning” and Physically Constrained Neural Networks to Derive Complex Glaciological Change Processes from Modern High-Resolution Satellite Imagery: Application of the GEOCLASS-Image System to Create VarioCNN for Glacier Surges

The objectives of this paper are to investigate the trade-offs between a physically constrained neural network and a deep, convolutional neural network and to design a combined ML approach (“VarioCNN”). Our solution is provided in the framework of a cyberinfrastructure that includes a newly designed...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Ute C. Herzfeld, Lawrence J. Hessburg, Thomas M. Trantow, Adam N. Hayes
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2024
Subjects:
Q
Online Access:https://doi.org/10.3390/rs16111854
https://doaj.org/article/b3476227be0840ff8034f532a3669ce0
Description
Summary:The objectives of this paper are to investigate the trade-offs between a physically constrained neural network and a deep, convolutional neural network and to design a combined ML approach (“VarioCNN”). Our solution is provided in the framework of a cyberinfrastructure that includes a newly designed ML software, GEOCLASS-image (v1.0), modern high-resolution satellite image data sets (Maxar WorldView data), and instructions/descriptions that may facilitate solving similar spatial classification problems. Combining the advantages of the physically-driven connectionist-geostatistical classification method with those of an efficient CNN, VarioCNN provides a means for rapid and efficient extraction of complex geophysical information from submeter resolution satellite imagery. A retraining loop overcomes the difficulties of creating a labeled training data set. Computational analyses and developments are centered on a specific, but generalizable, geophysical problem: The classification of crevasse types that form during the surge of a glacier system. A surge is a glacial catastrophe, an acceleration of a glacier to typically 100–200 times its normal velocity. GEOCLASS-image is applied to study the current (2016-2024) surge in the Negribreen Glacier System, Svalbard. The geophysical result is a description of the structural evolution and expansion of the surge, based on crevasse types that capture ice deformation in six simplified classes.