On the vertical growth of continents in deep depressions of the Earth’s peridotite mantle

Research subject. The geological structure and evolution of the Earth’s continents.Methods. This article is based on a long-term study and review of geological, geophysical and bathymetric published data, as well as on an analysis of the major geological discoveries of the 20th century.Results and c...

Full description

Bibliographic Details
Published in:LITHOSPHERE (Russia)
Main Author: A. M. Zhirnov
Format: Article in Journal/Newspaper
Language:English
Russian
Published: A.N. Zavaritsky Institute of Geology and Geochemistry 2020
Subjects:
Online Access:https://doi.org/10.24930/1681-9004-2020-20-5-727-745
https://doaj.org/article/b256d53c7001442daf46587c117d5759
Description
Summary:Research subject. The geological structure and evolution of the Earth’s continents.Methods. This article is based on a long-term study and review of geological, geophysical and bathymetric published data, as well as on an analysis of the major geological discoveries of the 20th century.Results and conclusions. It is established that all the continents on the Earth, except for Antarctica, constitute a single Northen megamaterik, which was being formed during a prolonged period of time (4.4 billion years) in a deep three-beam cavity on the surface of the peridotite mantle. The ancient Hadean– Archean basement of the megacontinent was being formed during the period of 3 billion years, which comprises about 70% of the Earth’s geological history. In the Late Proterozoic and Phanerozoic, periodically formed local depressions were flooded with sedimentary material leading to the formation of sedimentary basins and folded rock structures. As a result, the thickness of the megacontinent’s crust steadily increased reaching a large size of 15–40 or 60–70 km. During this period, the primary oceanic (peridotite) crust with a thickness of 3–5 km remained unchanged until the Mesozoic–Cenozoic, when it was covered with a layer of younger basalts and loose rock sediments with a thickness of 1–2 km.