How do disease control measures impact spatial predictions of schistosomiasis and hookworm? The example of predicting school-based prevalence before and after preventive chemotherapy in Ghana.

Background Schistosomiasis and soil-transmitted helminth infections are among the neglected tropical diseases (NTDs) affecting primarily marginalized communities in low- and middle-income countries. Surveillance data for NTDs are typically sparse, and hence, geospatial predictive modeling based on r...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Alexandra V Kulinkina, Andrea Farnham, Nana-Kwadwo Biritwum, Jürg Utzinger, Yvonne Walz
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2023
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0011424
https://doaj.org/article/b07c2f23d77c49b8be0626aec496e88f
Description
Summary:Background Schistosomiasis and soil-transmitted helminth infections are among the neglected tropical diseases (NTDs) affecting primarily marginalized communities in low- and middle-income countries. Surveillance data for NTDs are typically sparse, and hence, geospatial predictive modeling based on remotely sensed (RS) environmental data is widely used to characterize disease transmission and treatment needs. However, as large-scale preventive chemotherapy has become a widespread practice, resulting in reduced prevalence and intensity of infection, the validity and relevance of these models should be re-assessed. Methodology We employed two nationally representative school-based prevalence surveys of Schistosoma haematobium and hookworm infections from Ghana conducted before (2008) and after (2015) the introduction of large-scale preventive chemotherapy. We derived environmental variables from fine-resolution RS data (Landsat 8) and examined a variable distance radius (1-5 km) for aggregating these variables around point-prevalence locations in a non-parametric random forest modeling approach. We used partial dependence and individual conditional expectation plots to improve interpretability of results. Principal findings The average school-level S. haematobium prevalence decreased from 23.8% to 3.6% and that of hookworm from 8.6% to 3.1% between 2008 and 2015. However, hotspots of high-prevalence locations persisted for both infections. The models with environmental data extracted from a buffer radius of 2-3 km around the school location where prevalence was measured had the best performance. Model performance (according to the R2 value) was already low and declined further from approximately 0.4 in 2008 to 0.1 in 2015 for S. haematobium and from approximately 0.3 to 0.2 for hookworm. According to the 2008 models, land surface temperature (LST), modified normalized difference water index, elevation, slope, and streams variables were associated with S. haematobium prevalence. LST, slope, and improved water ...