Genetically Determined MBL Deficiency Is Associated with Protection against Chronic Cardiomyopathy in Chagas Disease.

Chagas disease (CD) is caused by Trypanosoma cruzi, whose sugar moieties are recognized by mannan binding lectin (MBL), a soluble pattern-recognition molecule that activates the lectin pathway of complement. MBL levels and protein activity are affected by polymorphisms in the MBL2 gene. We sequenced...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Paola Rosa Luz, Márcia I Miyazaki, Nelson Chiminacio Neto, Marcela C Padeski, Ana Cláudia M Barros, Angelica B W Boldt, Iara J Messias-Reason
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2016
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0004257
https://doaj.org/article/af5be25f010e408ea69e2dec8f809c9a
Description
Summary:Chagas disease (CD) is caused by Trypanosoma cruzi, whose sugar moieties are recognized by mannan binding lectin (MBL), a soluble pattern-recognition molecule that activates the lectin pathway of complement. MBL levels and protein activity are affected by polymorphisms in the MBL2 gene. We sequenced the MBL2 promoter and exon 1 in 196 chronic CD patients and 202 controls. The MBL2*C allele, which causes MBL deficiency, was associated with protection against CD (P = 0.007, OR = 0.32). Compared with controls, genotypes with this allele were completely absent in patients with the cardiac form of the disease (P = 0.003). Furthermore, cardiac patients with genotypes causing MBL deficiency presented less heart damage (P = 0.003, OR = 0.23), compared with cardiac patients having the XA haplotype causing low MBL levels, but fully capable of activating complement (P = 0.005, OR = 7.07). Among the patients, those with alleles causing MBL deficiency presented lower levels of cytokines and chemokines possibly implicated in symptom development (IL9, p = 0.013; PDGFB, p = 0.036 and RANTES, p = 0.031). These findings suggest a protective effect of genetically determined MBL deficiency against the development and progression of chronic CD cardiomyopathy.