Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard

In this study, we combine remote sensing, in situ and model-derived datasets from 1966 to 2014 to calculate the mass-balance components of Kronebreen, a fast-flowing tidewater glacier in Svalbard. For the well-surveyed period 2009–2014, we are able to close the glacier mass budget within the prescri...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: CESAR DESCHAMPS-BERGER, CHRISTOPHER NUTH, WARD VAN PELT, ETIENNE BERTHIER, JACK KOHLER, BAS ALTENA
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press 2019
Subjects:
Online Access:https://doi.org/10.1017/jog.2018.98
https://doaj.org/article/aeefc723d16a43ada6c9d4ab92291549
Description
Summary:In this study, we combine remote sensing, in situ and model-derived datasets from 1966 to 2014 to calculate the mass-balance components of Kronebreen, a fast-flowing tidewater glacier in Svalbard. For the well-surveyed period 2009–2014, we are able to close the glacier mass budget within the prescribed errors. During these 5 years, the glacier geodetic mass balance was −0.69 ± 0.12 m w.e. a−1, while the mass budget method led to a total mass balance of −0.92 ± 0.16 m w.e. a−1, as a consequence of a strong frontal ablation (−0.78 ± 0.11 m w.e. a−1), and a slightly negative climatic mass balance (−0.14 ± 0.11 m w.e. a−1). The trend towards more negative climatic mass balance between 1966–1990 (+0.20 ± 0.05 m w.e. a−1) and 2009–2014 is not reflected in the geodetic mass balance trend. Therefore, we suspect a reduction in ice-discharge in the most recent period. Yet, these multidecadal changes in ice-discharge cannot be measured from the available observations and thus are only estimated with relatively large errors as a residual of the mass continuity equation. Our study presents the multidecadal evolution of the dynamics and mass balance of a tidewater glacier and illustrates the errors introduced by inferring one unmeasured mass-balance component from the others.