CONTENT AND COMPOSITION OF ATMOSPHERIC AND GREENHOUSE GASES IN UNDERGROUND ICE OF DIFFERENT GENESIS

The relevance. The greenhouse effect is often associated with methane and carbon dioxide emission from the thawing gas-saturated icy deposits. The relationship between the increase in concentrations of greenhouse gases in the atmosphere and their content in underground ice and frozen deposits has no...

Full description

Bibliographic Details
Published in:Bulletin of the Tomsk Polytechnic University Geo Assets Engineering
Main Authors: Vladislav I. Butakov, Elena A. Slagoda, Yana V. Tikhonravova
Format: Article in Journal/Newspaper
Language:Russian
Published: Tomsk Polytechnic University 2021
Subjects:
Online Access:https://doi.org/10.18799/24131830/2021/11/3082
https://doaj.org/article/ad2b620606a0428a8875588df9adef85
Description
Summary:The relevance. The greenhouse effect is often associated with methane and carbon dioxide emission from the thawing gas-saturated icy deposits. The relationship between the increase in concentrations of greenhouse gases in the atmosphere and their content in underground ice and frozen deposits has not been sufficiently studied. Different and incomparable methods of gas sampling from frozen deposits and ice are used to assess the content of gases in sediments and ice, the volume of gases entering the atmosphere. When generalizing the data on carbon emissions in the Arctic zone, it is necessary to take into account both the methods of determining the content and composition of gases and the different chemical composition, the presence of organic and mineral inclusions in genetic types of underground ice. The aim of the research is to determine the results of different methods of gas sampling from ice and to establish the relationship between the content and composition of gases in common genetic types of ground ice. Objects: genesis types of ice (segregated, closed-cavity, and ice wedge), icy frozen deposits of the north of Western Siberia: on the Bely island, on Western Yamal, on the north of Gydan and the Pur-Taz interfluve, collected in expeditions of the Earth Cryosphere Institute, Tyumen scientific center SB RAS in 2014–2019. Research methods and interpretation of chemical composition. The thermal vacuum degassing method and the «headspace» method were used for gas extraction from frozen monoliths and ice. The thermal vacuum degassing method in laboratory conditions with the determination of the gas volume in the ice sample was used as a reference. The method of gas chromatography was applied to determine the composition of atmospheric and greenhouse gases. Gas content in ice and gas content in frozen peat that contains gas in the atmosphere, and the values of the gas solubility in water were compared. The correlation analysis of the gas content in common types of underground ice, as well as frozen peat, was ...