Analysis and Variation of the Maiac Aerosol Optical Depth in Underexplored Urbanized Area of National Capital Region, India

Aerosol monitoring is the emerging application field of satellite remote sensing. As a satellite-based indicator of aerosol concentration, aerosol optical depth (AOD) can aid in assessing the crucial effects of aerosols on the global environment. Among various satellite-based aerosol product, Modera...

Full description

Bibliographic Details
Published in:Journal of Landscape Ecology
Main Authors: Sharma Vipasha, Ghosh Swagata, Kumari Maya, Taloor Ajay Kumar, Singh Sultan, Arola Antti, Devara Panuganti C. S.
Format: Article in Journal/Newspaper
Language:English
Published: Sciendo 2022
Subjects:
aod
ncr
Online Access:https://doi.org/10.2478/jlecol-2022-0019
https://doaj.org/article/ab646974e1eb4ac7900d723e17f901a8
Description
Summary:Aerosol monitoring is the emerging application field of satellite remote sensing. As a satellite-based indicator of aerosol concentration, aerosol optical depth (AOD) can aid in assessing the crucial effects of aerosols on the global environment. Among various satellite-based aerosol product, Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 (C6), Multiangle Implementation of Atmospheric Correction (MAIAC) aerosol product (1 km resolution) has still untapped potential in Indian regions. Considering the importance of regional validation of such high-resolution aerosol product, the present study attempts to fill this gap by validating MAIAC aerosol estimates (AODMAIAC) in highly polluted districts (Faridabad, Ghaziabad, Gautam Budh Nagar, Gurugram) of National Capital Region (NCR) with heavy aerosol loading using limited AErosol RObotic NETwork (AERONET) observations obtained from AERONET sites at Amity University (AU) and Gual Pahari (GP). Such evaluation of satellite-retrieved aerosol product with ground data confirms its practicality based on retrieval errors (Expected Error (EE) values (EE = 0.05 + 15 %*AOD) (EE: 78.85 % at AU, 73.58 % at GP), root mean square error (RMSE) values (RMSE: 0.15 at AU, 0.24 at GP), and correlation coefficient (R) values (R: 0.86 at AU, 0.73 at GP). The seasonal variation in AOD over the study area from 2010-2019 reveals increasing trend of AOD in the monsoon and post-monsoon season due to natural and anthropogenic factors. In addition to contributing to a holistic assessment of MAIAC aerosol estimates as a recent, high-resolution aerosol product, present results provide a basis for further research into NCR aerosols.