Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet

Landforms left behind by the last Scandinavian Ice Sheet (SIS) offer an opportunity to investigate controls governing ice sheet dynamics. Terrestrial sectors of the ice sheet have received considerable attention from landform and stratigraphic investigations. In contrast, despite its geographical im...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: I. Szuman, J. Z. Kalita, C. R. Diemont, S. J. Livingstone, C. D. Clark, M. Margold
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2024
Subjects:
Online Access:https://doi.org/10.5194/tc-18-2407-2024
https://doaj.org/article/aa755d8cadaa4d6a80f3377c52155f6d
Description
Summary:Landforms left behind by the last Scandinavian Ice Sheet (SIS) offer an opportunity to investigate controls governing ice sheet dynamics. Terrestrial sectors of the ice sheet have received considerable attention from landform and stratigraphic investigations. In contrast, despite its geographical importance, the Baltic Sea remains poorly constrained due to limitations in bathymetric data. Both ice-sheet-scale investigations and regional studies at the southern periphery of the SIS have considered the Baltic depression to be a preferential route for ice flux towards the southern ice margin throughout the last glaciation. During the deglaciation the Baltic depression hosted the extensive Baltic Ice Lake, which likely exerted a considerable control on ice dynamics. Here we investigate the Baltic depression using newly available bathymetric data and peripheral topographic data. These data reveal an extensive landform suite stretching from Denmark in the west to Estonia in the east and from the southern European coast to the Åland Sea, comprising an area of 0.3 million km 2 . We use these landforms to reconstruct aspects of the ice dynamic history of the Baltic sector of the ice sheet. Landform evidence indicates a complex retreat pattern that changes from lobate ice margins with splaying lineations to parallel mega-scale glacial lineations (MSGLs) in the deeper depressions of the Baltic Basin. Ice margin still-stands on underlying geological structures indicate the likely importance of pinning points during deglaciation, resulting in a stepped retreat signal. Over the span of the study area we identify broad changes in the ice flow direction, ranging from SE–NW to N–S and then to NW–SE. MSGLs reveal distinct corridors of fast ice flow (ice streams) with widths of 30 km and up to 95 km in places, rather than the often-interpreted Baltic-wide (300 km) accelerated ice flow zone. These smaller ice streams are interpreted as having operated close behind the ice margin during late stages of deglaciation. Where previous ...