The Application of RGB, Multispectral, and Thermal Imagery to Document and Monitor Archaeological Sites in the Arctic: A Case Study from South Greenland

Over the past decades, climate change has accelerated the deterioration of heritage sites and archaeological resources in Arctic and subarctic landscapes. At the same time, increased tourism and growing numbers of site visitors contribute to the degradation and manipulation of archaeological sites....

Full description

Bibliographic Details
Published in:Drones
Main Authors: Jørgen Hollesen, Malte Skov Jepsen, Hans Harmsen
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2023
Subjects:
UAV
Online Access:https://doi.org/10.3390/drones7020115
https://doaj.org/article/a9756449806140f5a5e854a575cea8d4
Description
Summary:Over the past decades, climate change has accelerated the deterioration of heritage sites and archaeological resources in Arctic and subarctic landscapes. At the same time, increased tourism and growing numbers of site visitors contribute to the degradation and manipulation of archaeological sites. This situation has created an urgent need for new, quick, and non-invasive tools and methodologies that can help cultural heritage managers detect, monitor, and mitigate vulnerable sites. In this context, remote sensing and the applications of UAVs could play an important role. Here, we used a drone equipped with an RGB camera and a single multispectral/thermal camera to test different possible archeological applications at two well-known archaeological sites in the UNESCO World Heritage area of Kujataa in south Greenland. The data collected were used to test the potential of using the cameras for mapping (1) ruins and structures, (2) the impact of human activity, and (3) soil moisture variability. Our results showed that a combination of RGB and digital surface models offers very useful information to identify and map ruins and structures at the study sites. Furthermore, a combination of RGB and NDVI maps seems to be the best method to monitor wear and tear on the vegetation caused by visitors. Finally, we tried to estimate the surface soil moisture content based on temperature rise and the Temperature Vegetation Dryness Index (TVDI), but did not achieve any meaningful connection between TVDI and on-site soil moisture measurements. Ultimately, our results pointed to a limited archaeological applicability of the TVDI method in Arctic contexts.