Molecular characterization of Babesia peircei and Babesia ugwidiensis provides insight into the evolution and host specificity of avian piroplasmids

There are 16 recognized species of avian-infecting Babesia spp. (Piroplasmida: Babesiidae). While the classification of piroplasmids has been historically based on morphological differences, geographic isolation and presumed host and/or vector specificities, recent studies employing gene sequence an...

Full description

Bibliographic Details
Published in:International Journal for Parasitology: Parasites and Wildlife
Main Authors: Michael J. Yabsley, Ralph E.T. Vanstreels, Barbara C. Shock, Michaelle Purdee, Elizabeth C. Horne, Michael A. Peirce, Nola J. Parsons
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2017
Subjects:
Online Access:https://doi.org/10.1016/j.ijppaw.2017.08.006
https://doaj.org/article/a943f3d536ff46e1aa6d54e5515e033b
Description
Summary:There are 16 recognized species of avian-infecting Babesia spp. (Piroplasmida: Babesiidae). While the classification of piroplasmids has been historically based on morphological differences, geographic isolation and presumed host and/or vector specificities, recent studies employing gene sequence analysis have provided insight into their phylogenetic relationships and host distribution and specificity. In this study, we analyzed the sequences of the 18S rRNA gene and ITS-1 and ITS-2 regions of two Babesia species from South African seabirds: Babesia peircei from African penguins (Spheniscus demersus) and Babesia ugwidiensis from Bank and Cape cormorants (Phalacrocorax neglectus and P. capensis, respectively). Our results show that avian Babesia spp. are not monophyletic, with at least three distinct phylogenetic groups. B. peircei and B. ugwidiensis are closely related, and fall within the same phylogenetic group as B. ardeae (from herons Ardea cinerea), B. poelea (from boobies Sula spp.) and B. uriae (from murres Uria aalge). The validity of B. peircei and B. ugwidiensis as separate species is corroborated by both morphological and genetic evidence. On the other hand, our results indicate that B. poelea might be a synonym of B. peircei, which in turn would be a host generalist that infects seabirds from multiple orders. Further studies combining morphological and molecular methods are warranted to clarify the taxonomy, phylogeny and host distribution of avian piroplasmids. Keywords: Africa, Babesia, Piroplasmida, Phalacrocoracidae, Spheniscidae, Tick-borne pathogen