Fine spatial-scale variation in scavenger activity influences avian mortality assessments on a boreal island.

Bird-window collisions are the second leading cause of human-related avian mortality for songbirds in Canada. Our ability to accurately estimate the number of fatalities caused by window collisions is affected by several biases, including the removal of carcasses by scavengers prior to those carcass...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Megan J Clarke, Erin E Fraser, Ian G Warkentin
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2020
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0233427
https://doaj.org/article/a923f7ede6a442a0ab2934be7ccddc24
Description
Summary:Bird-window collisions are the second leading cause of human-related avian mortality for songbirds in Canada. Our ability to accurately estimate the number of fatalities caused by window collisions is affected by several biases, including the removal of carcasses by scavengers prior to those carcasses being detected during surveys. We investigated the role of scavenger behavior in modifying perceived carcass removal rate while describing habitat-specific differences for the scavengers present in a relatively scavenger-depauperate island ecosystem. We used motion activated cameras to monitor the fate of hatchling chicken carcasses placed at building (under both windows and windowless walls) and forest (open and closed canopy) sites in western Newfoundland, Canada. We recorded the identity of scavengers, timing of events, and frequency of repeat scavenging at sites. Using 2 treatments, we also assessed how scavenging varied with 2 levels of carcass availability (daily versus every third day). Scavenger activities differed substantially between forest and building sites. Only common ravens (Corvus corax) removed carcasses at building sites, with 25 of 26 removals occurring under windows. Burying beetles (Nicrophorus spp.) dominated scavenging at forest sites (14 of 18 removals), completely removing carcasses from sight in under 24 hours. Availability had no effect on removal rate. These findings suggest that ravens look for carcasses near building windows, where bird-window collision fatalities create predictable food sources, but that this learning preceded the study. Such behavior resulted in highly heterogeneous scavenging rates at fine spatial scales indicating the need for careful consideration of carcass and camera placement when monitoring scavenger activity. Our observations of burying beetle activity indicate that future studies investigating bird collision mortality near forested habitats and with infrequent surveys, should consider local invertebrate community composition during survey design. The high ...