Using Machine Learning Algorithm to Detect Blowing Snow and Fog in Antarctica Based on Ceilometer and Surface Meteorology Systems

Blowing snow is a common weather phenomenon in Antarctica and plays an important role in the water vapor cycle and ice sheet mass balance. Although it has a significant impact on the climate of Antarctica, people do not know much about this process. Fog events are difficult to distinguish from blowi...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Jin Ye, Lei Liu, Yi Wu, Wanying Yang, Hong Ren
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2022
Subjects:
fog
Q
Online Access:https://doi.org/10.3390/rs14092126
https://doaj.org/article/a747534ca9aa43a4805b78c520e74bcb
Description
Summary:Blowing snow is a common weather phenomenon in Antarctica and plays an important role in the water vapor cycle and ice sheet mass balance. Although it has a significant impact on the climate of Antarctica, people do not know much about this process. Fog events are difficult to distinguish from blowing snow events using existing detection algorithms by a ceilometer. In this study, based on ceilometer, the meteorological parameters observed by surface meteorology systems are further combined to detect blowing snow and fog using the AdaBoost algorithm. The weather phenomena recorded by human observers are ‘true’. The dataset is collected from 1 January 2016 to 31 December 2016 at the AWARE site. Among them, three-quarters of the data are used as the training set and the rest of the data as the testing set. The classification accuracy of the proposed algorithm for the testing set is about 94%. Compared with the Loeb method, the proposed algorithm can detect 89.12% of blowing snow events and 76.10% of fog events, while the Loeb method can only identify 64.29% of blowing snow events and 31.87% of fog events.