Concomitant Immunity Induced by Persistent Leishmania major Does Not Preclude Secondary Re-Infection: Implications for Genetic Exchange, Diversity and Vaccination.

BACKGROUND:Many microbes have evolved the ability to co-exist for long periods of time within other species in the absence of overt pathology. Evolutionary biologists have proposed benefits to the microbe from 'asymptomatic persistent infections', most commonly invoking increased likelihoo...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Michael A Mandell, Stephen M Beverley
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2016
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0004811
https://doaj.org/article/a4ed6dff08454af5b86d7af331c3207c
Description
Summary:BACKGROUND:Many microbes have evolved the ability to co-exist for long periods of time within other species in the absence of overt pathology. Evolutionary biologists have proposed benefits to the microbe from 'asymptomatic persistent infections', most commonly invoking increased likelihood of transmission by longer-lived hosts. Typically asymptomatic persistent infections arise from strong containment by the immune system, accompanied by protective immunity; such 'vaccination' from overt disease in the presence of a non-sterilizing immune response is termed premunition or concomitant immunity. Here we consider another potential benefit of persistence and concomitant immunity to the parasite: the 'exclusion' of competing super-infecting strains, which would favor transmission of the original infecting organism. METHODOLOGY / PRINCIPLE FINDINGS:To investigate this in the protozoan parasite Leishmania major, a superb model for the study of asymptomatic persistence, we used isogenic lines of comparable virulence bearing independent selectable markers. One was then used to infect genetically resistant mice, yielding infections which healed and progressed to asymptomatic persistent infection; these mice were then super-infected with the second marked line. As anticipated, super-infection yielded minimal pathology, showing that protective immunity against disease pathology had been established. The relative abundance of the primary and super-infecting secondary parasites was then assessed by plating on selective media. The data show clearly that super-infecting parasites were able to colonize the immune host effectively, achieving numbers comparable to and sometimes greater than that of the primary parasite. CONCLUSIONS / SIGNIFICANCE:We conclude that induction of protective immunity does not guarantee the Leishmania parasite exclusive occupation of the infected host. This finding has important consequences to the maintenance and generation of parasite diversity in the natural Leishmania infectious cycle alternating ...