Understanding the transport of Patagonian dust and its influence on marine biological activity in the South Atlantic Ocean

The supply of bioavailable iron to the high-nitrate low-chlorophyll (HNLC) waters of the Southern Ocean through atmospheric pathways could stimulate phytoplankton blooms and have major implications for the global carbon cycle. In this study, model results and remotely-sensed data are analyzed to exa...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: M. S. Johnson, N. Meskhidze, V. P. Kiliyanpilakkil, S. Gassó
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2011
Subjects:
Online Access:https://doi.org/10.5194/acp-11-2487-2011
https://doaj.org/article/a4cd888f851848d4973b51e5e6a98ca5
Description
Summary:The supply of bioavailable iron to the high-nitrate low-chlorophyll (HNLC) waters of the Southern Ocean through atmospheric pathways could stimulate phytoplankton blooms and have major implications for the global carbon cycle. In this study, model results and remotely-sensed data are analyzed to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of iron-laden mineral dust deposition on marine biological productivity in the surface waters of the South Atlantic Ocean (SAO). Model simulations for the atmospheric transport and deposition of mineral dust and bioavailable iron are carried out for two large dust outbreaks originated at the source regions of northern Patagonia during the austral summer of 2009. Model-simulated horizontal and vertical transport pathways of Patagonian dust plumes are in reasonable agreement with remotely-sensed data. Simulations indicate that the synoptic meteorological patterns of high and low pressure systems are largely accountable for dust transport trajectories over the SAO. According to model results and retrievals from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), synoptic flows caused by opposing pressure systems (a high pressure system located to the east or north-east of a low pressure system) elevate the South American dust plumes well above the marine boundary layer. Under such conditions, the bulk concentration of mineral dust can quickly be transported around the low pressure system in a clockwise manner, follow the southeasterly advection pathway, and reach the HNLC waters of the SAO and Antarctica in ~3–4 days after emission from the source regions of northern Patagonia. Two different mechanisms for dust-iron mobilization into a bioavailable form are considered in this study. A global 3-D chemical transport model (GEOS-Chem), implemented with an iron dissolution scheme, is employed to estimate the atmospheric fluxes of soluble iron, while a dust/biota assessment tool (Boyd et al., 2010) is ...