Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka

The absence of sunlight during the winter in the High Arctic results in a strong surface-based atmospheric temperature inversion, especially during clear skies and light surface wind conditions. The inversion suppresses turbulent heat transfer between the ground and the boundary layer. As a result,...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: A. B. Tikhomirov, G. Lesins, J. R. Drummond
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2021
Subjects:
Online Access:https://doi.org/10.5194/amt-14-7123-2021
https://doaj.org/article/a26f3dfeffa24bf4aa28097610afe07f
Description
Summary:The absence of sunlight during the winter in the High Arctic results in a strong surface-based atmospheric temperature inversion, especially during clear skies and light surface wind conditions. The inversion suppresses turbulent heat transfer between the ground and the boundary layer. As a result, the difference between the surface air temperature, measured at a height of 2 m , and the ground skin temperature can exceed several degrees Celsius. Such inversions occur very frequently in polar regions, are of interest to understand the mechanisms responsible for surface–atmosphere heat, mass, and momentum exchanges, and are critical for satellite validation studies. In this paper we present the results of operations of two commercial remotely piloted aircraft systems, or drones, at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80 ∘ N latitude. The drones are the Matrice 100 and Matrice 210 RTK quadcopters manufactured by DJI and were flown over Eureka during the February–March field campaigns in 2017 and 2020. They were equipped with a temperature measurement system built on a Raspberry Pi single-board computer, three platinum-wire temperature sensors, a Global Navigation Satellite System receiver, and a barometric altimeter. We demonstrate that the drones can be effectively used in the extremely challenging High Arctic conditions to measure vertical temperature profiles up to 75 m above the ground and sea ice surface at ambient temperatures down to − 46 ∘ C . Our results indicate that the inversion lapse rates within the 0–10 m altitude range above the ground can reach values of ∼ 10–30 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msup><mi/><mo>∘</mo></msup><mi mathvariant="normal">C</mi><mspace width="0.25em" linebreak="nobreak"/><mo>(</mo><mn mathvariant="normal">100</mn><mspace width="0.125em" ...