Delayed phenotypic expression of growth hormone transgenesis during early ontogeny in Atlantic salmon (Salmo salar)?

Should growth hormone (GH) transgenic Atlantic salmon escape, there may be the potential for ecological and genetic impacts on wild populations. This study compared the developmental rate and respiratory metabolism of GH transgenic and non-transgenic full sibling Atlantic salmon during early ontogen...

Full description

Bibliographic Details
Published in:PLoS ONE
Main Authors: Darek T R Moreau, A Kurt Gamperl, Garth L Fletcher, Ian A Fleming
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2014
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0095853
https://doaj.org/article/a0bdd58e00e04a109fa8b044801854f7
Description
Summary:Should growth hormone (GH) transgenic Atlantic salmon escape, there may be the potential for ecological and genetic impacts on wild populations. This study compared the developmental rate and respiratory metabolism of GH transgenic and non-transgenic full sibling Atlantic salmon during early ontogeny; a life history period of intense selection that may provide critical insight into the fitness consequences of escaped transgenics. Transgenesis did not affect the routine oxygen consumption of eyed embryos, newly hatched larvae or first-feeding juveniles. Moreover, the timing of early life history events was similar, with transgenic fish hatching less than one day earlier, on average, than their non-transgenic siblings. As the start of exogenous feeding neared, however, transgenic fish were somewhat developmentally behind, having more unused yolk and being slightly smaller than their non-transgenic siblings. Although such differences were found between transgenic and non-transgenic siblings, family differences were more important in explaining phenotypic variation. These findings suggest that biologically significant differences in fitness-related traits between GH transgenic and non-transgenic Atlantic salmon were less than family differences during the earliest life stages. The implications of these results are discussed in light of the ecological risk assessment of genetically modified animals.