Extended validation and evaluation of the OLCI–SLSTR SYNERGY aerosol product (SY_2_AOD) on Sentinel-3

We present the first extended validation of a new SYNERGY global aerosol product (SY_2_AOD), which is based on synergistic use of data from the Ocean and Land Color Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR) sensors aboard the Copernicus Sentinel-3A (S3A) and Senti...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: L. Sogacheva, M. Denisselle, P. Kolmonen, T. H. Virtanen, P. North, C. Henocq, S. Scifoni, S. Dransfeld
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://doi.org/10.5194/amt-15-5289-2022
https://doaj.org/article/a062f74c136449619e14ce397613649b
Description
Summary:We present the first extended validation of a new SYNERGY global aerosol product (SY_2_AOD), which is based on synergistic use of data from the Ocean and Land Color Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR) sensors aboard the Copernicus Sentinel-3A (S3A) and Sentinel-3B (S3B) satellites. Validation covers period from 14 January 2020 to 30 September 2021. Several approaches, including statistical analysis, time series analysis, and comparison with similar aerosol products from the other spaceborne sensor, the Moderate Resolution Imaging Spectroradiometer (MODIS), were applied for validation and evaluation of S3A and S3B SY_2 aerosol products, including aerosol optical depth (AOD) provided at different wavelengths, AOD pixel-level uncertainties, fine-mode AOD, and Angström exponent. Over ocean, the performance of SY_2 AOD (syAOD) retrieved at 550 nm is good: for S3A and S3B, Pearson correlation coefficients with the Maritime Aerosol Network (MAN) component of the AErosol RObotic NETwork (AERONET) are 0.88 and 0.85, respectively; 88.6 % and 89.5 % of pixels fit into the MODIS error envelope (EE) of ± 0.05 ± 0.2 × AOD. Over land, correlation coefficients with AERONET AOD (aAOD) are 0.60 and 0.63 for S3A and S3B, respectively; 51.4 % and 57.9 % of pixels fit into MODIS EE. Reduced performance over land is expected since the surface reflectance and angular distribution of scattering are higher and more difficult to predict over land than over ocean. The results are affected by a large number of outliers. Evaluation of the per-retrieval uncertainty with the χ 2 test indicates that syAOD prognostic uncertainties (PU) are slightly underestimated ( χ 2 = 3.1); if outliers are removed, PU describes the syAOD error well ( χ 2 = 1.6). The regional analysis of the Angström exponent, which relates to the aerosol size distribution, shows spatial correlation with expected sources. For 40 % of the matchups with AERONET in the Northern Hemisphere (NH) and for 60 % of the matchups in the Southern ...