Significantly lower summer minimum temperature warming trend on the southern Tibetan Plateau than over the Eurasian continent since the Industrial Revolution

Summer temperature dominates environmental degradation and water resource availability on the Tibetan Plateau (TP), affecting glacier melting, permafrost degradation, desertification and streamflow, etc. Extending summer temperature records back before the instrumental period is fundamentally import...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Chunming Shi, Kaicun Wang, Cheng Sun, Yuandong Zhang, Yanyi He, Xiaoxu Wu, Cong Gao, Guocan Wu, Lifu Shu
Format: Article in Journal/Newspaper
Language:English
Published: IOP Publishing 2019
Subjects:
Q
Online Access:https://doi.org/10.1088/1748-9326/ab55fc
https://doaj.org/article/9fb11f5e73684fba9b998bee795bf8df
Description
Summary:Summer temperature dominates environmental degradation and water resource availability on the Tibetan Plateau (TP), affecting glacier melting, permafrost degradation, desertification and streamflow, etc. Extending summer temperature records back before the instrumental period is fundamentally important for climatic and environmental studies over long timescales. By pooling 39 tree-ring width records from the TP that show significant ( P < 0.05) correlations with the summer (June–August) minimum temperature (MinT) of the nearest grid point, we reconstructed a 366-year summer MinT record for the southern TP (STP). Reconstructed and instrumental data are highly coherent within the 1950–2010 calibration interval ( R ^2 = 0.50, P < 0.001). The reconstruction captures major temperature anomalies, such as the coldest interval of the 1810s–1820s and unprecedented warming since the 1990s. We found that the linear trends of the instrumental and reconstructed STP summer MinTs are significantly lower than those for the larger Eurasian continent over the periods 1950–2010 and 1850–1950, respectively. The lower warming rate of STP summer MinT since 1850 could be due to increased evaporative cooling, and the absence of warming enhancement factors such as snow-albedo and energy-absorbing aerosols in summer. The reconstructed summer warming rate for the STP appears to be significantly overestimated by the ensemble mean of the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulation.