Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination.

Yellow fever (YF), transmitted via bites of infected mosquitoes, is a life-threatening viral disease endemic to tropical and subtropical regions of Africa and South America. YF has largely been controlled by widespread national vaccination campaigns. Nevertheless, between December 2015 and August 20...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Shi Zhao, Lewi Stone, Daozhou Gao, Daihai He
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2018
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0006158
https://doaj.org/article/9f93196f776645f7bf96d06a72674cfa
Description
Summary:Yellow fever (YF), transmitted via bites of infected mosquitoes, is a life-threatening viral disease endemic to tropical and subtropical regions of Africa and South America. YF has largely been controlled by widespread national vaccination campaigns. Nevertheless, between December 2015 and August 2016, YF resurged in Angola, quickly spread and became the largest YF outbreak for the last 30 years. Recently, YF resurged again in Brazil (December 2016). Thus, there is an urgent need to gain better understanding of the transmission pattern of YF.The present study provides a refined mathematical model, combined with modern likelihood-based statistical inference techniques, to assess and reconstruct important epidemiological processes underlying Angola's YF outbreak. This includes the outbreak's attack rate, the reproduction number ([Formula: see text]), the role of the mosquito vector, the influence of climatic factors, and the unusual but noticeable appearance of two-waves in the YF outbreak. The model explores actual and hypothetical vaccination strategies, and the impacts of possible human reactive behaviors (e.g., response to media precautions).While there were 73 deaths reported over the study period, the model indicates that the vaccination campaign saved 5.1-fold more people from death and saved from illness 5.6-fold of the observed 941 cases. Delaying the availability of the vaccines further would have greatly worsened the epidemic in terms of increased cases and deaths. The analysis estimated a mean [Formula: see text] and an attack rate of 0.09-0.15% (proportion of population infected) over the whole period from December 2015 to August 2016. Our estimated lower and upper bounds of [Formula: see text] are in line with previous studies. Unusually, [Formula: see text] oscillated in a manner that was "delayed" with the reported deaths. High recent number of deaths were associated (followed) with periods of relatively low disease transmission and low [Formula: see text], and vice-versa. The time-series of ...