Seasonal and interannual variability in runoff from the Werenskioldbreen catchment, Spitsbergen

The results from a hydrological monitoring program of Breelva basin (Spits− bergen, Svalbard) have been analysed to improve the understanding of the Werenskiöld Glacier system’s functioning in the High Arctic. Hydrographs of a 44 km2 river basin (27 km2 of which was covered by a glacier) were analys...

Full description

Bibliographic Details
Published in:Polish Polar Research
Main Authors: Majchrowska Elżbieta, Ignatiuk Dariusz, Jania Jacek, Marszałek Henryk, Wąsik Mirosław
Format: Article in Journal/Newspaper
Language:English
Published: Polish Academy of Sciences 2015
Subjects:
Online Access:https://doi.org/10.1515/popore-2015-0014
https://doaj.org/article/9f91426d8e734ef1b2d65a964ea9736d
Description
Summary:The results from a hydrological monitoring program of Breelva basin (Spits− bergen, Svalbard) have been analysed to improve the understanding of the Werenskiöld Glacier system’s functioning in the High Arctic. Hydrographs of a 44 km2 river basin (27 km2 of which was covered by a glacier) were analysed for the period 2007-2012. Sea− sonal discharge fluctuations were linked to glacier ablation and meteorological parameters, including atmospheric circulation types. A dichotomy was found in the discharge peaks generation during the hydrologically active season, with the main role played by snow and ice melt events during its first part and the rainfall regime dominating its second part. Foehn type strong winds played a significant role in the generation of ablation type floods (e.g. in August 2011). A simple classification of the runoff regime was applied to the examined six−year period, resulting in the identification of its three types: the ablation type (dominant in 2007 and 2009), the rainfall type (in the years 2011-2012), and the mixed type (during 2008 and 2010). According to publications the river flow season in Spitsbergen begins in June and end with freeze−up in September or at the beginning of October. Recently, this sea− son for Breelva tend to be extended with the mid−May onset and end in the second part of October. A multiannual trend was noted that reflects a growing importance of rainfalls, especially in September. Rainfall waters play a more distinct role in outflow from the Breelva catchment recently.