Hydrological recurrence as a measure for large river basin classification and process understanding

Hydrological functions of river basins are summarized as collection, storage and discharge, which can be characterized by the dynamics of hydrological variables including precipitation, evaporation, storage and runoff. The temporal patterns of each variable can be indicators of the functionality of...

Full description

Bibliographic Details
Published in:Hydrology and Earth System Sciences
Main Authors: R. Fernandez, T. Sayama
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2015
Subjects:
Online Access:https://doi.org/10.5194/hess-19-1919-2015
https://doaj.org/article/9f2b2cf10d7a4956b08554b855d48b9d
Description
Summary:Hydrological functions of river basins are summarized as collection, storage and discharge, which can be characterized by the dynamics of hydrological variables including precipitation, evaporation, storage and runoff. The temporal patterns of each variable can be indicators of the functionality of a basin. In this paper we introduce a measure to quantify the degree of similarity in intra-annual variations at monthly scale at different years for the four main variables. We introduce this measure under the term of recurrence and define it as the degree to which a monthly hydrological variable returns to the same state in subsequent years. The degree of recurrence in runoff is important not only for the management of water resources but also for the understanding of hydrologic processes, especially in terms of how the other three variables determine the recurrence in runoff. The main objective of this paper is to propose a simple hydrologic classification framework applicable to large basins at global scale based on the combinations of recurrence in the four variables using a monthly scale time series. We evaluate it with lagged autocorrelation (AC), fast Fourier transforms (FFT) and Colwell's indices of variables obtained from the EU-WATCH data set, which is composed of eight global hydrologic model (GHM) and land surface model (LSM) outputs. By setting a threshold to define high or low recurrence in the four variables, we classify each river basin into 16 possible classes. The overview of recurrence patterns at global scale suggested that precipitation is recurrent mainly in the humid tropics, Asian monsoon area and part of higher latitudes with an oceanic influence. Recurrence in evaporation was mainly dependent on the seasonality of energy availability, typically high in the tropics, temperate and sub-arctic regions. Recurrence in storage at higher latitudes depends on energy/water balances and snow, while that in runoff is mostly affected by the different combinations of these three variables. According to ...