Prey and habitat distribution are not enough to explain predator habitat selection: addressing intraspecific interactions, behavioural state and time

Abstract Background Movements and habitat selection of predators shape ecological communities by determining the spatiotemporal distribution of predation risk. Although intraspecific interactions associated to territoriality and parental care are involved in predator habitat selection, few studies h...

Full description

Bibliographic Details
Published in:Movement Ecology
Main Authors: Alexis Grenier-Potvin, Jeanne Clermont, Gilles Gauthier, Dominique Berteaux
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2021
Subjects:
Online Access:https://doi.org/10.1186/s40462-021-00250-0
https://doaj.org/article/9d81c50ba1a7408ab59fb2dc8c9b28fd
Description
Summary:Abstract Background Movements and habitat selection of predators shape ecological communities by determining the spatiotemporal distribution of predation risk. Although intraspecific interactions associated to territoriality and parental care are involved in predator habitat selection, few studies have addressed their effects simultaneously with those of prey and habitat distribution. Moreover, individuals require behavioural and temporal flexibility in their movement decisions to meet various motivations in a heterogeneous environment. To untangle the relative importance of ecological determinants of predator fine-scale habitat selection, we studied simultaneously several spatial, temporal, and behavioural predictors of habitat selection in territorial arctic foxes (Vulpes lagopus) living within a Greater snow goose (Anser caerulescens atlantica) colony during the reproductive season. Methods Using GPS locations collected at 4-min intervals and behavioural state classification (active and resting), we quantified how foxes modulate state-specific habitat selection in response to territory edges, den proximity, prey distribution, and habitats. We also assessed whether foxes varied their habitat selection in response to an important phenological transition marked by decreasing prey availability (goose egg hatching) and decreasing den dependency (emancipation of cubs). Results Multiple factors simultaneously played a key role in driving habitat selection, and their relative strength differed with respect to the behavioural state and study period. Foxes avoided territory edges, and reproductive individuals selected den proximity before the phenological transition. Higher goose nest density was selected when foxes were active but avoided when resting, and was less selected after egg hatching. Selection for tundra habitats also varied through the summer, but effects were not consistent. Conclusions We conclude that constraints imposed by intraspecific interactions can play, relative to prey distribution and habitat ...