Shifting Precipitation Patterns Drive Growth Variability and Drought Resilience of European Atlas Cedar Plantations

Tree plantations have been proposed as suitable carbon sinks to mitigate climate change. Drought may reduce their carbon uptake, increasing their vulnerability to stress and affecting their growth recovery and resilience. We investigated the recent growth rates and responses to the climate and droug...

Full description

Bibliographic Details
Published in:Forests
Main Authors: Jesús Julio Camarero, Antonio Gazol, Michele Colangelo, Juan Carlos Linares, Rafael M. Navarro-Cerrillo, Álvaro Rubio-Cuadrado, Fernando Silla, Pierre-Jean Dumas, François Courbet
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2021
Subjects:
Online Access:https://doi.org/10.3390/f12121751
https://doaj.org/article/9c7a8fd02e6b4993a89b7db822fb3b62
Description
Summary:Tree plantations have been proposed as suitable carbon sinks to mitigate climate change. Drought may reduce their carbon uptake, increasing their vulnerability to stress and affecting their growth recovery and resilience. We investigated the recent growth rates and responses to the climate and drought in eight Atlas cedar ( Cedrus atlantica ) plantations located along a wide climate gradient from wetter sites in south-eastern France and north Spain to dry sites in south-eastern Spain. The cedar growth increased in response to the elevated precipitation from the prior winter to the current summer, but the influence of winter precipitation on growth gained importance in the driest sites. The growth responsiveness to climate and drought peaked in those dry sites, but the growth resilience did not show a similar gradient. The Atlas cedar growth was driven by the total precipitation during the hydrological year and this association strengthened from the 1980s onwards, a pattern related to the winter North Atlantic Oscillation (NAO). High winter NAO indices and drier conditions were associated with lower growth. At the individual level, growth resilience was related to tree age, while growth recovery and year-to-year growth variability covaried. Plantations’ resilience to drought depends on both climate and tree-level features.