Gene family expansions in Antarctic winged midge as a strategy for adaptation to cold environments

Abstract Parochlus steinenii is the only flying insect native to Antarctica. To elucidate the molecular mechanisms underlying its adaptation to cold environments, we conducted comparative genomic analyses of P. steinenii and closely related lineages. In an analysis of gene family evolution, 68 rapid...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Heesoo Kim, Han-Woo Kim, Jun Hyuck Lee, Joonho Park, Hyoungseok Lee, Sanghee Kim, Seung Chul Shin
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2022
Subjects:
R
Q
Online Access:https://doi.org/10.1038/s41598-022-23268-9
https://doaj.org/article/9c577d9c5c2c4eddbe4181fcc9f42167
Description
Summary:Abstract Parochlus steinenii is the only flying insect native to Antarctica. To elucidate the molecular mechanisms underlying its adaptation to cold environments, we conducted comparative genomic analyses of P. steinenii and closely related lineages. In an analysis of gene family evolution, 68 rapidly evolving gene families, involved in the innate immune system, unfolded protein response, DNA packaging, protein folding, and unsaturated fatty acid biosynthesis were detected. Some gene families were P. steinenii-specific and showed phylogenetic instability. Acyl-CoA delta desaturase and heat shock cognate protein 70 (Hsc70) were representative gene families, showing signatures of positive selection with multiple gene duplication events. Acyl-CoA delta desaturases may play pivotal roles in membrane fluidity, and expanded Hsc70 genes may function as chaperones or thermal sensors in cold environments. These findings suggest that multiple gene family expansions contributed to the adaptation of P. steinenii to cold environments.