Trypanosoma cruzi infection and endothelin-1 cooperatively activate pathogenic inflammatory pathways in cardiomyocytes.

Trypanosoma cruzi, the causative agent of Chagas' disease, induces multiple responses in the heart, a critical organ of infection and pathology in the host. Among diverse factors, eicosanoids and the vasoactive peptide endothelin-1 (ET-1) have been implicated in the pathogenesis of chronic chag...

Full description

Bibliographic Details
Published in:PLoS Neglected Tropical Diseases
Main Authors: Ricardo S Corral, Néstor A Guerrero, Henar Cuervo, Núria Gironès, Manuel Fresno
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2013
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0002034
https://doaj.org/article/9b8d48e0bc434447868a6f230ba86048
Description
Summary:Trypanosoma cruzi, the causative agent of Chagas' disease, induces multiple responses in the heart, a critical organ of infection and pathology in the host. Among diverse factors, eicosanoids and the vasoactive peptide endothelin-1 (ET-1) have been implicated in the pathogenesis of chronic chagasic cardiomyopathy. In the present study, we found that T. cruzi infection in mice induces myocardial gene expression of cyclooxygenase-2 (Cox2) and thromboxane synthase (Tbxas1) as well as endothelin-1 (Edn1) and atrial natriuretic peptide (Nppa). T. cruzi infection and ET-1 cooperatively activated the Ca(2+)/calcineurin (Cn)/nuclear factor of activated T cells (NFAT) signaling pathway in atrial myocytes, leading to COX-2 protein expression and increased eicosanoid (prostaglandins E(2) and F(2α), thromboxane A(2)) release. Moreover, T. cruzi infection of ET-1-stimulated cardiomyocytes resulted in significantly enhanced production of atrial natriuretic peptide (ANP), a prognostic marker for impairment in cardiac function of chagasic patients. Our findings support an important role for the Ca(2+)/Cn/NFAT cascade in T. cruzi-mediated myocardial production of inflammatory mediators and may help define novel therapeutic targets.