A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism.

BACKGROUND: HIV protease inhibitor (PI) therapy results in the rapid selection of drug resistant viral variants harbouring one or two substitutions in the viral protease. To combat PI resistance development, two approaches have been developed. The first is to increase the level of PI in the plasma o...

Full description

Bibliographic Details
Published in:PLoS Medicine
Main Authors: Monique Nijhuis, Noortje M van Maarseveen, Stephane Lastere, Pauline Schipper, Eoin Coakley, Bärbel Glass, Mirka Rovenska, Dorien de Jong, Colombe Chappey, Irma W Goedegebuure, Gabrielle Heilek-Snyder, Dominic Dulude, Nick Cammack, Lea Brakier-Gingras, Jan Konvalinka, Neil Parkin, Hans-Georg Kräusslich, Francoise Brun-Vezinet, Charles A B Boucher
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2007
Subjects:
R
Online Access:https://doi.org/10.1371/journal.pmed.0040036
https://doaj.org/article/9b249d2a4df84827a9f40807268dca47
Description
Summary:BACKGROUND: HIV protease inhibitor (PI) therapy results in the rapid selection of drug resistant viral variants harbouring one or two substitutions in the viral protease. To combat PI resistance development, two approaches have been developed. The first is to increase the level of PI in the plasma of the patient, and the second is to develop novel PI with high potency against the known PI-resistant HIV protease variants. Both approaches share the requirement for a considerable increase in the number of protease mutations to lead to clinical resistance, thereby increasing the genetic barrier. We investigated whether HIV could yet again find a way to become less susceptible to these novel inhibitors. METHODS AND FINDINGS: We have performed in vitro selection experiments using a novel PI with an increased genetic barrier (RO033-4649) and demonstrated selection of three viruses 4- to 8-fold resistant to all PI compared to wild type. These PI-resistant viruses did not have a single substitution in the viral protease. Full genomic sequencing revealed the presence of NC/p1 cleavage site substitutions in the viral Gag polyprotein (K436E and/or I437T/V) in all three resistant viruses. These changes, when introduced in a reference strain, conferred PI resistance. The mechanism leading to PI resistance is enhancement of the processing efficiency of the altered substrate by wild-type protease. Analysis of genotypic and phenotypic resistance profiles of 28,000 clinical isolates demonstrated the presence of these NC/p1 cleavage site mutations in some clinical samples (codon 431 substitutions in 13%, codon 436 substitutions in 8%, and codon 437 substitutions in 10%). Moreover, these cleavage site substitutions were highly significantly associated with reduced susceptibility to PI in clinical isolates lacking primary protease mutations. Furthermore, we used data from a clinical trial (NARVAL, ANRS 088) to demonstrate that these NC/p1 cleavage site changes are associated with virological failure during PI therapy. CONCLUSIONS: ...