Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia

Abstract Background Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to de...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Loha Eskindir, Lindtjørn Bernt
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2010
Subjects:
Online Access:https://doi.org/10.1186/1475-2875-9-166
https://doaj.org/article/98ce98417ca140d1b3c63997c760d39d
Description
Summary:Abstract Background Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Methods Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Results Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data transformation ...