Assessing the role of thermal erosion in channel deformation processes in rivers of permafrost zone

The study is focused on the deformations caused by the impact of water flow in a river channel composed of melt-able permafrost rocks. It is based on the results of laboratory and mathematical simulation. The results of numerical calculations are compared with data of laboratory and field observatio...

Full description

Bibliographic Details
Published in:E3S Web of Conferences
Main Authors: Debolskaya Elena, Maslikova Oksana, Gritsuk Ilya
Format: Article in Journal/Newspaper
Language:English
French
Published: EDP Sciences 2020
Subjects:
Online Access:https://doi.org/10.1051/e3sconf/202016301003
https://doaj.org/article/97c7f96d052e43f9885fa655932e2a26
Description
Summary:The study is focused on the deformations caused by the impact of water flow in a river channel composed of melt-able permafrost rocks. It is based on the results of laboratory and mathematical simulation. The results of numerical calculations are compared with data of laboratory and field observations. The study shows that a comprehensive and adequate model of river channel deformations should take into account not only ablation, but also other factors, including heat transfer in the soil, sediment transport, and bank slope collapses. Numerical experiments with an improved mathematical model, applied to long time intervals, have shown that the differences between the averaged deformations, calculated by a model of ablation alone, i.e., ignoring bank slope collapses and sediment transport, and a comprehensive model can be considerable. Experiments in a hydraulic flume were good enough to reproduce the effect of delayed collapse, consisting in nonsimultaneous impacts of channel-forming rock melting and a freshet.