Trace element transport in western Siberian rivers across a permafrost gradient

Towards a better understanding of trace element (TE) transport in permafrost-affected Earth surface environments, we sampled ∼ 60 large and small rivers (< 100 to ≤ 150 000 km 2 watershed area) of the Western Siberian Lowland (WSL) during spring flood and summer and winter baseflow across a 1500...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: O. S. Pokrovsky, R. M. Manasypov, S. V. Loiko, I. A. Krickov, S. G. Kopysov, L. G. Kolesnichenko, S. N. Vorobyev, S. N. Kirpotin
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2016
Subjects:
Online Access:https://doi.org/10.5194/bg-13-1877-2016
https://doaj.org/article/97477c5b4bf44ced92924cc8991ee0ad
Description
Summary:Towards a better understanding of trace element (TE) transport in permafrost-affected Earth surface environments, we sampled ∼ 60 large and small rivers (< 100 to ≤ 150 000 km 2 watershed area) of the Western Siberian Lowland (WSL) during spring flood and summer and winter baseflow across a 1500 km latitudinal gradient covering continuous, discontinuous, sporadic and permafrost-free zones. Analysis of ∼ 40 major and TEs in the dissolved (< 0.45 µm) fraction allowed establishing main environmental factors controlling the transport of metals and TEs in rivers of this environmentally important region. No statistically significant effect of the basin size on most TE concentrations was evidenced. Two groups of elements were distinguished: (1) elements that show the same trend throughout the year and (2) elements that show seasonal differences. The first group included elements decreasing northward during all seasons (Sr, Mo, U, As, Sb) marking the underground water influence of river feeding. The elements of the second group exhibited variable behavior in the course of the year. A northward increase during spring period was mostly pronounced for Fe, Al, Co, Zn and Ba and may stem from a combination of enhanced leaching from the topsoil and vegetation and bottom waters of the lakes (spring overturn). A springtime northward decrease was observed for Ni, Cu, Zr and Rb. The increase in element concentration northward was observed for Ti, Ga, Zr and Th only in winter, whereas Fe, Al, rare earth elements (REEs), Pb, Zr, and Hf increased northward in both spring and winter, which could be linked to leaching from peat and transport in the form of Fe-rich colloids. A southward increase in summer was strongly visible for Fe, Ni, Ba, Rb and V, probably due to peat/moss release (Ni, Ba, Rb) or groundwater feeding (Fe, V). Finally, B, Li, Cr, V, Mn, Zn, Cd, and Cs did not show any distinct trend from S to N. The order of landscape component impact on TE concentration in rivers was lakes > bogs > forest. The lakes ...