Social environment and genetics underlie body site‐specific microbiomes of Yellowstone National Park gray wolves (Canis lupus)

Abstract The host‐associated microbiome is an important player in the ecology and evolution of species. Despite growing interest in the medical, veterinary, and conservation communities, there remain numerous questions about the primary factors underlying microbiota, particularly in wildlife. We bri...

Full description

Bibliographic Details
Published in:Ecology and Evolution
Main Authors: Alexandra L. DeCandia, Kira A. Cassidy, Daniel R. Stahler, Erin A. Stahler, Bridgett M. vonHoldt
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2021
Subjects:
Online Access:https://doi.org/10.1002/ece3.7767
https://doaj.org/article/92188c9367d74c26a4174d5512430a0b
Description
Summary:Abstract The host‐associated microbiome is an important player in the ecology and evolution of species. Despite growing interest in the medical, veterinary, and conservation communities, there remain numerous questions about the primary factors underlying microbiota, particularly in wildlife. We bridged this knowledge gap by leveraging microbial, genetic, and observational data collected in a wild, pedigreed population of gray wolves (Canis lupus) inhabiting Yellowstone National Park. We characterized body site‐specific microbes across six haired and mucosal body sites (and two fecal samples) using 16S rRNA amplicon sequencing. At the phylum level, we found that the microbiome of gray wolves primarily consists of Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria, consistent with previous studies within Mammalia and Canidae. At the genus level, we documented body site‐specific microbiota with functions relevant to microenvironment and local physiological processes. We additionally employed observational and RAD sequencing data to examine genetic, demographic, and environmental correlates of skin and gut microbiota. We surveyed individuals across several levels of pedigree relationships, generations, and social groups, and found that social environment (i.e., pack) and genetic relatedness were two primary factors associated with microbial community composition to differing degrees between body sites. We additionally reported body condition and coat color as secondary factors underlying gut and skin microbiomes, respectively. We concluded that gray wolf microbiota resemble similar host species, differ between body sites, and are shaped by numerous endogenous and exogenous factors. These results provide baseline information for this long‐term study population and yield important insights into the evolutionary history, ecology, and conservation of wild wolves and their associated microbes.