Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings

Abstract Background Autodissemination of pyriproxyfen (PPF), i.e. co-opting adult female mosquitoes to transfer the insect growth regulator, pyriproxyfen (PPF) to their aquatic habitats has been demonstrated for Aedes and Anopheles mosquitoes. This approach, could potentially enable high coverage of...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Dickson Lwetoijera, Samson Kiware, Fredros Okumu, Gregor J. Devine, Silas Majambere
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2019
Subjects:
Online Access:https://doi.org/10.1186/s12936-019-2803-1
https://doaj.org/article/8e5c4dd9e5694d0dbcd17011feb4a221
Description
Summary:Abstract Background Autodissemination of pyriproxyfen (PPF), i.e. co-opting adult female mosquitoes to transfer the insect growth regulator, pyriproxyfen (PPF) to their aquatic habitats has been demonstrated for Aedes and Anopheles mosquitoes. This approach, could potentially enable high coverage of aquatic mosquito habitats, including those hard to locate or reach via conventional larviciding. This study demonstrated impacts of autodissemination in crashing a stable and self-sustaining population of the malaria vector, Anopheles arabiensis under semi-field conditions in Tanzania. Methods Self-propagating populations of An. arabiensis were established inside large semi-field cages. Larvae fed on naturally occurring food in 20 aquatic habitats in two study chambers (9.6 × 9.6 m each), while emerging adults fed on tethered cattle. The mosquito population was monitored using emergence traps and human landing catches, each time returning captured adults into the chambers. Once the population was stable (after 23 filial generations), PPF dissemination devices (i.e. four clay pots each treated with 0.2–0.3 g PPF) were introduced into one of the chambers (treatment) and their impact monitored in parallel with untreated chamber (control). Results Daily adult emergence was similar between control and treatment chambers, with average (± SE) of 14.22 ± 0.70 and 12.62 ± 0.74 mosquitoes/trap, respectively, before treatment. Three months post-treatment, mean number of adult An. arabiensis emerging from the habitats was 5.22 ± 0.42 in control and 0.14 ± 0.04 in treatment chambers. This was equivalent to > 97% suppression in treatment chamber without re-treatment of the clay pots. Similarly, the number of mosquitoes attempting to bite volunteers inside the treatment chamber decreased to zero, 6 months post-exposure (i.e. 100% suppression). In contrast, biting rates in control rose to 53.75 ± 3.07 per volunteer over the same period. Conclusion These findings demonstrate effective suppression of stable populations of malaria ...