Interaction between a Cyclically Heated Building and the Ground, for Selected Locations in Europe

The aim of the study was to verify the impact of the location of a cyclically heated building on its energy needs and interaction with the environment. The model building was a large-scale broiler house located in southern Poland. In the examined facility, year-round measurements of selected paramet...

Full description

Bibliographic Details
Published in:Energies
Main Authors: Grzegorz Nawalany, Paweł Sokołowski
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2022
Subjects:
T
Online Access:https://doi.org/10.3390/en15207493
https://doaj.org/article/8cad61412cff4b33ae681c1e4ba75892
Description
Summary:The aim of the study was to verify the impact of the location of a cyclically heated building on its energy needs and interaction with the environment. The model building was a large-scale broiler house located in southern Poland. In the examined facility, year-round measurements of selected parameters of the internal and external microclimate were carried out. The tests also covered the temperature of the soil in three measurement columns. The obtained measurement results were used for further computer analyses. A geometric model of the building was made and a calculation model specification was introduced, supported by specialized software for the physics of WUFI ® plus structures. The numerical analysis included validation. The validation results were assessed on the basis of the Coefficient of Determination method (R2) and the Goodness of Fit (GOF) method. Due to the lack of normality of the data distribution, a Rang-Spearman correlation analysis was carried out, which showed a very strong data correlation (0.94). The analysis of the R2 coefficient of determination confirmed the high reliability of the model (83%). In the case of the GOF method, a compliance value of 87% was obtained. Differentiated locations were adopted for further analysis, while maintaining the structure of the examined building in reality. Six European locations were selected: Kraków (Poland), Málaga (Spain), Brest (France), Visby (Sweden), Umea (Sweden), and Kiruna (Sweden). The analysis included three variants, in which the length of the technological break was adopted accordingly. A technological break between production cycles was assumed, the three variants of which lasted 3, 7, and 14 days. The analysis of the obtained results showed that the external microclimate significantly determines the energy interaction between the building and the ground. The length of the technological break is very important in a climate dominated by low temperatures (Northern Scandinavia). The south-western part of Europe allows the technological break ...