Climate history of the Southern Hemisphere Westerlies belt during the last glacial–interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina)

The Southern Hemisphere Westerlies (SHW) play a crucial role in large-scale ocean circulation and global carbon cycling. Accordingly, the reconstruction of how the latitudinal position and intensity of the SHW belt changed during the last glacial termination is essential for understanding global cli...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: J. Zhu, A. Lücke, H. Wissel, C. Mayr, D. Enters, K. Ja Kim, C. Ohlendorf, F. Schäbitz, B. Zolitschka
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2014
Subjects:
Online Access:https://doi.org/10.5194/cp-10-2153-2014
https://doaj.org/article/8c4bcc1bfb9d4086864e6cbf8e3087f5
Description
Summary:The Southern Hemisphere Westerlies (SHW) play a crucial role in large-scale ocean circulation and global carbon cycling. Accordingly, the reconstruction of how the latitudinal position and intensity of the SHW belt changed during the last glacial termination is essential for understanding global climatic fluctuations. The southernmost part of the South American continent is the only continental mass intersecting a large part of the SHW belt. However, due to the scarcity of suitable palaeoclimate archives continuous proxy records back to the last glacial are rare in southern Patagonia. Here, we show an oxygen isotope record from cellulose and purified bulk organic matter of submerged aquatic moss shoots from Laguna Potrok Aike (52° S, 70° W), a deep maar lake located in semi-arid, extra-Andean Patagonia, covering the last glacial–interglacial transition (26 000 to 8500 cal BP). Based on the highly significant correlation between oxygen isotope values of modern aquatic mosses and their host waters and abundant well-preserved moss remains in the sediment record a high-resolution reconstruction of the lake water oxygen isotope (δ 18 O lw-corr ) composition is presented. The reconstructed δ 18 O lw-corr values for the last glacial are ca. 3‰ lower than modern values, which can best be explained by generally cooler air temperatures and changes in the moisture source area, together with the occurrence of permafrost leading to a prolonged lake water residence time. Thus, the overall glacial δ 18 O lw-corr level until 21 000 cal BP is consistent with a scenario of weakened or absent SHW at 52° S compared to the present. During the last deglaciation, reconstructed δ 18 O lw-corr values reveal a significant two-step rise describing the detailed response of the lake's hydrological balance to this fundamental climatic shift. Rapid warming is seen as the cause of the first rise of ca. 2&permil, in δ 18 O lw-corr during the first two millennia of deglaciation (17 600 to 15 600 cal BP) owing to more 18 O enriched ...