Statistical study about the influence of particle precipitation on mesosphere summer echoes in polar latitudes during July 2013

Abstract Based on experimental observations with EISCAT VHF radar during the summer period, July 8–12, 2013, the observations of polar mesosphere summer echoes (PMSE) in the absence of particle precipitation indicate that particle precipitation is not a necessary condition for PMSE to exist. But, pa...

Full description

Bibliographic Details
Published in:Earth, Planets and Space
Main Authors: Abdur Rauf, Hailong Li, Safi Ullah, Lin Meng, Bin Wang, Maoyan Wang
Format: Article in Journal/Newspaper
Language:English
Published: SpringerOpen 2018
Subjects:
G
Online Access:https://doi.org/10.1186/s40623-018-0885-6
https://doaj.org/article/8c2e90ba7c594c4a90e799304eeadd7c
Description
Summary:Abstract Based on experimental observations with EISCAT VHF radar during the summer period, July 8–12, 2013, the observations of polar mesosphere summer echoes (PMSE) in the absence of particle precipitation indicate that particle precipitation is not a necessary condition for PMSE to exist. But, particle precipitation still affects PMSE when they both occur simultaneously. So in this paper, the relationship between PMSE and particle precipitation both represented by average electron density, occurring simultaneously for time interval of various lengths (t ≥ 2.56 min), is statistically analyzed using the Spearman rank and Pearson linear correlation coefficients. The new method by comparing the average electron density at altitude of 90 km (proxy of particle precipitation) and PMSE region at altitude of 80–90 km (proxy of PMSE) may compare the two phenomena directly and give some relationship between them. The percentage of events having positive values is dominant, which shows that the electron density variations due to the ionization produced by energetic particle precipitations might have some relationship with PMSE intensity. Moreover, the small percentage of negative correlation coefficient observed might be caused by the very strong precipitation at that time.