The effect of livestock density on Trypanosoma brucei gambiense and T. b. rhodesiense: A causal inference-based approach.

Domestic and wild animals are important reservoirs of the rhodesiense form of human African trypanosomiasis (rHAT), however quantification of this effect offers utility for deploying non-medical control activities, and anticipating their success when wildlife are excluded. Further, the uncertain rol...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Julianne Meisner, Agapitus Kato, Marshal Msanyama Lemerani, Erick Mwamba Miaka, Acaga Ismail Taban, Jonathan Wakefield, Ali Rowhani-Rahbar, David M Pigott, Jonathan D Mayer, Peter M Rabinowitz
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2022
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0010155
https://doaj.org/article/8b50af673e5941d4a669898ca75aaf44
Description
Summary:Domestic and wild animals are important reservoirs of the rhodesiense form of human African trypanosomiasis (rHAT), however quantification of this effect offers utility for deploying non-medical control activities, and anticipating their success when wildlife are excluded. Further, the uncertain role of animal reservoirs-particularly pigs-threatens elimination of transmission (EOT) targets set for the gambiense form (gHAT). Using a new time series of high-resolution cattle and pig density maps, HAT surveillance data collated by the WHO Atlas of HAT, and methods drawn from causal inference and spatial epidemiology, we conducted a retrospective ecological cohort study in Uganda, Malawi, Democratic Republic of the Congo (DRC) and South Sudan to estimate the effect of cattle and pig density on HAT risk. For rHAT, we found a positive effect for cattle (RR 1.61, 95% CI 0.90, 2.99) and pigs (RR 2.07, 95% CI 1.15, 2.75) in Uganda, and a negative effect for cattle (RR 0.88, 95% CI 0.71, 1.10) and pigs (RR 0.42, 95% CI 0.23, 0.67) in Malawi. For gHAT we found a negative effect for cattle in Uganda (RR 0.88, 95% CI 0.50, 1.77) and South Sudan (RR 0.63, 95% CI 0.54, 0.77) but a positive effect in DRC (1.17, 95% CI 1.04, 1.32). For pigs, we found a positive gHAT effect in both Uganda (RR 2.02, 95% CI 0.87, 3.94) and DRC (RR 1.23, 95% CI 1.10, 1.37), and a negative association in South Sudan (RR 0.66, 95% CI 0.50, 0.98). These effects did not reach significance for the cattle-rHAT effect in Uganda or Malawi, or the cattle-gHAT and pig-gHAT effects in Uganda. While ecological bias may drive the findings in South Sudan, estimated E-values and simulation studies suggest unmeasured confounding and underreporting are unlikely to explain our findings in Malawi, Uganda, and DRC. Our results suggest cattle and pigs may be important reservoirs of rHAT in Uganda but not Malawi, and that pigs-and possibly cattle-may be gHAT reservoirs.