A minimal 3D model of mosquito flight behaviour around the human baited bed net

Abstract Background Advances in digitized video-tracking and behavioural analysis have enabled accurate recording and quantification of mosquito flight and host-seeking behaviours, facilitating development of individual (agent) based models at much finer spatial scales than previously possible. Meth...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Jeff Jones, Gregory P D Murray, Philip J McCall
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2021
Subjects:
Online Access:https://doi.org/10.1186/s12936-020-03546-5
https://doaj.org/article/88e52b7dffe34c85abdebe745934826b
Description
Summary:Abstract Background Advances in digitized video-tracking and behavioural analysis have enabled accurate recording and quantification of mosquito flight and host-seeking behaviours, facilitating development of individual (agent) based models at much finer spatial scales than previously possible. Methods Quantified behavioural parameters were used to create a novel virtual testing model, capable of accurately simulating indoor flight behaviour by a virtual population of host-seeking mosquitoes as they interact with and respond to simulated stimuli from a human-occupied bed net. The model is described, including base mosquito behaviour, state transitions, environmental representation and host stimulus representation. Results In the absence of a bed net and human host bait, flight distribution of the model population was relatively uniform throughout the arena. Introducing an unbaited untreated bed net induced a change in distribution with an increase in landing events on the net surface, predominantly on the sides of the net. Adding the presence of a simulated human bait dramatically impacted flight distribution patterns, exploratory foraging and, the number and distribution of landing positions on the net, which were determined largely by the orientation of the human within. The model replicates experimental results with free-flying living mosquitoes at human-occupied bed nets, where contact occurs predominantly on the top surface of the net. This accuracy is important as it quantifies exposure to the lethal insecticide residues that may be unique to the net roof (or theoretically any other surface). Number of net contacts and height of contacts decreased with increasing attractant dispersal noise. Conclusions Results generated by the model are an accurate representation of actual mosquito behaviour recorded at and around a human-occupied bed net in untreated and insecticide-treated nets. This fine-grained model is highly flexible and has significant potential for in silico screening of novel bed net designs, ...