Detrimental role of IL-33/ST2 pathway sustaining a chronic eosinophil-dependent Th2 inflammatory response, tissue damage and parasite burden during Toxocara canis infection in mice.

Toxocariasis is a neglected disease that affects people around the world. Humans become infected by accidental ingestion of eggs containing Toxocara canis infective larvae, which upon reaching the intestine, hatch, penetrate the mucosa and migrate to various tissues such as liver, lungs and brain. S...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Thaís Leal-Silva, Flaviane Vieira-Santos, Fabrício Marcus Silva Oliveira, Luiza de Lima Silva Padrão, Lucas Kraemer, Pablo Hemanoel da Paixão Matias, Camila de Almeida Lopes, Ana Cristina Loiola Ruas, Isabella Carvalho de Azevedo, Denise Silva Nogueira, Milene Alvarenga Rachid, Marcelo Vidigal Caliari, Remo Castro Russo, Ricardo Toshio Fujiwara, Lilian Lacerda Bueno
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2021
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0009639
https://doaj.org/article/88e2d6f11a974743b2fbd9891049e4bf
Description
Summary:Toxocariasis is a neglected disease that affects people around the world. Humans become infected by accidental ingestion of eggs containing Toxocara canis infective larvae, which upon reaching the intestine, hatch, penetrate the mucosa and migrate to various tissues such as liver, lungs and brain. Studies have indicated that Th2 response is the main immune defense mechanism against toxocariasis, however, there are still few studies related to this response, mainly the IL-33/ST2 pathway. Some studies have reported an increase in IL-33 during helminth infections, including T. canis. By binding to its ST2 receptor, IL-33 stimulating the Th2 polarized immune cell and cytokine responses. Thus, we aimed to investigate the role of the IL-33/ST2 pathway in the context of T. canis larval migration and the immunological and pathophysiological aspects of the infection in the liver, lungs and brain from Wild-Type (WT) BALB/c background and genetically deficient mice for the ST2 receptor (ST2-/-). The most important findings revealed that the IL-33/ST2 pathway is involved in eosinophilia, hepatic and cerebral parasitic burden, and induces the formation of granulomas related to tissue damage and pulmonary dysfunction. However, ST2-/- mice, the immune response was skewed to Th1/Th17 type than Th2, that enhanced the control of parasite burden related to IgG2a levels, tissue macrophages infiltration and reduced lung dysfunction. Collectively, our results demonstrate that the Th2 immune response triggered by IL-33/ST2 pathway mediates susceptibility to T. canis, related to parasitic burden, eosinophilia and granuloma formation in which consequently contributes to tissue inflammation and injury.