Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing po...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: F. Khosrawi, O. Kirner, B.-M. Sinnhuber, S. Johansson, M. Höpfner, M. L. Santee, L. Froidevaux, J. Ungermann, R. Ruhnke, W. Woiwode, H. Oelhaf, P. Braesicke
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2017
Subjects:
Online Access:https://doi.org/10.5194/acp-17-12893-2017
https://doaj.org/article/85df99486a26482092e088b419c10cf5
Description
Summary:The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical–dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar stratospheric O 3 loss of ∼ 2 ppmv or 117 DU in terms of column ozone in ...