Use of length heterogeneity polymerase chain reaction (LH-PCR) as non-invasive approach for dietary analysis of Svalbard reindeer, Rangifer tarandus platyrhynchus.

To efficiently investigate the forage preference of Svalbard reindeer (Rangifer tarandus platyrhynchus), we applied length-heterogeneity polymerase chain reaction (LH-PCR) based on length differences of internal transcribed spacer (ITS) regions of ribosomal RNA (rRNA) to fecal samples from R. tarand...

Full description

Bibliographic Details
Published in:PLoS ONE
Main Authors: Sungbae Joo, Donguk Han, Eun Ju Lee, Sangkyu Park
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2014
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0091552
https://doaj.org/article/8414d99caa9f43d7b034c77e70b1a066
Description
Summary:To efficiently investigate the forage preference of Svalbard reindeer (Rangifer tarandus platyrhynchus), we applied length-heterogeneity polymerase chain reaction (LH-PCR) based on length differences of internal transcribed spacer (ITS) regions of ribosomal RNA (rRNA) to fecal samples from R. tarandus platyrhynchus. A length-heterogeneity (LH) database was constructed using both collected potential food sources of Svalbard reindeer and fecal samples, followed by PCR, cloning and sequencing. In total, eighteen fecal samples were collected between 2011 and 2012 from 2 geographic regions and 15 samples were successfully amplified by PCR. The LH-PCR analysis detected abundant peaks, 18.6 peaks on an average per sample, ranging from 100 to 500 bp in size and showing distinct patterns associated with both regions and years of sample collection. Principal component analysis (PCA) resulted in clustering of 15 fecal samples into 3 groups by the year of collection and region with a statistically significant difference at 99.9% level. The first 2 principal components (PCs) explained 71.1% of the total variation among the samples. Through comparison with LH database and identification by cloning and sequencing, lichens (Stereocaulon sp. and Ochrolechia sp.) and plant species (Salix polaris and Saxifraga oppositifolia) were detected as the food sources that contributed most to the Svalbard reindeer diet. Our results suggest that the use of LH-PCR analysis would be a non-invasive and efficient monitoring tool for characterizing the foraging strategy of Svalbard reindeer. Additionally, combining sequence information would increase its resolving power in identification of foraged diet components.