Killing of diverse eye pathogens (Acanthamoeba spp., Fusarium solani, and Chlamydia trachomatis) with alcohols.
BACKGROUND:Blindness is caused by eye pathogens that include a free-living protist (Acanthamoeba castellanii, A. byersi, and/or other Acanthamoeba spp.), a fungus (Fusarium solani), and a bacterium (Chlamydia trachomatis). Hand-eye contact is likely a contributor to the spread of these pathogens, an...
Published in: | PLOS Neglected Tropical Diseases |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017
|
Subjects: | |
Online Access: | https://doi.org/10.1371/journal.pntd.0005382 https://doaj.org/article/83f6160939ae468c81d5c74fdbcd51f5 |
Summary: | BACKGROUND:Blindness is caused by eye pathogens that include a free-living protist (Acanthamoeba castellanii, A. byersi, and/or other Acanthamoeba spp.), a fungus (Fusarium solani), and a bacterium (Chlamydia trachomatis). Hand-eye contact is likely a contributor to the spread of these pathogens, and so hand washing with soap and water or alcohol-based hand sanitizers (when water is not available) might reduce their transmission. Recently we showed that ethanol and isopropanol in concentrations present in hand sanitizers kill walled cysts of Giardia and Entamoeba, causes of diarrhea and dysentery, respectively. The goal here was to determine whether these alcohols might kill infectious forms of representative eye pathogens (trophozoites and cysts of Acanthamoeba, conidia of F. solani, or elementary bodies of C. trachomatis). METHODOLOGY/PRINCIPAL FINDINGS:We found that treatment with 63% ethanol or 63% isopropanol kills >99% of Acanthamoeba trophozoites after 30 sec exposure, as shown by labeling with propidium iodide (PI) and failure to grow in culture. In contrast, Acanthamoeba cysts, which contain cellulose fibers in their wall, are relatively more resistant to these alcohols, particularly isopropanol. Depending upon the strain tested, 80 to 99% of Acanthamoeba cysts were killed by 63% ethanol after 2 min and 95 to 99% were killed by 80% ethanol after 30 sec, as shown by PI labeling and reduced rates of excystation in vitro. Both ethanol and isopropanol (63% for 30 sec) kill >99% of F. solani conidia, which have a wall of chitin and glucan fibrils, as demonstrated by PI labeling and colony counts on nutrient agar plates. Both ethanol and isopropanol (63% for 60 sec) inactivate 96 to 99% of elementary bodies of C. trachomatis, which have a wall of lipopolysaccharide but lack peptidoglycan, as measured by quantitative cultures to calculate inclusion forming units. CONCLUSIONS/SIGNIFICANCE:In summary, alcohols kill infectious forms of Acanthamoeba, F. solani, and C. trachomatis, although longer times and ... |
---|