Validation of the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY)

In 2009/2010 the Leibniz-Institute of Atmospheric Physics (IAP) installed a new powerful VHF radar on the island Andøya in Northern Norway (69.30° N, 16.04° E). The Middle Atmosphere Alomar Radar System (MAARSY) allows studies with high spatial and temporal resolution in the troposphere/lower strato...

Full description

Bibliographic Details
Published in:Advances in Radio Science
Main Authors: T. Renkwitz, W. Singer, R. Latteck, G. Stober, M. Rapp
Format: Article in Journal/Newspaper
Language:German
English
Published: Copernicus Publications 2012
Subjects:
Online Access:https://doi.org/10.5194/ars-10-245-2012
https://doaj.org/article/8307a7d01c52454b97e5da80949d39bd
Description
Summary:In 2009/2010 the Leibniz-Institute of Atmospheric Physics (IAP) installed a new powerful VHF radar on the island Andøya in Northern Norway (69.30° N, 16.04° E). The Middle Atmosphere Alomar Radar System (MAARSY) allows studies with high spatial and temporal resolution in the troposphere/lower stratosphere and in the mesosphere/lower thermosphere of the Arctic atmosphere. The monostatic radar is operated at 53.5 MHz with an active phased array antenna consisting of 433 Yagi antennas. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW, which implies high flexibility of beam forming and beam steering. During the design phase of MAARSY several model studies have been carried out in order to estimate the radiation pattern for various combinations of beam forming and steering. However, parameters like mutual coupling, active impedance and ground parameters have an impact on the radiation pattern, but can hardly be measured. Hence, experiments need to be designed to verify the model results. For this purpose, the radar has occasionally been used in passive mode, monitoring the noise power received from both distinct cosmic noise sources like e.g. Cassiopeia A and Cygnus A, and the diffuse cosmic background noise. The analysis of the collected dataset enables us to verify beam forming and steering attempts. These results document the current status of the radar during its development and provide valuable information for further improvement.