A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies

Three supervised neural network cloud classification routines are applied to daytime MODIS Aqua imagery and compared for the year 2018 over the North Atlantic Ocean. Routines surveyed here include the Morphology Identification Data Aggregated over the Satellite-era (MIDAS), which specializes in subt...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: R. Eastman, I. L. McCoy, H. Schulz, R. Wood
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2024
Subjects:
Online Access:https://doi.org/10.5194/acp-24-6613-2024
https://doaj.org/article/828ed8e74a5c4ca2ac16b9293022cf2b
Description
Summary:Three supervised neural network cloud classification routines are applied to daytime MODIS Aqua imagery and compared for the year 2018 over the North Atlantic Ocean. Routines surveyed here include the Morphology Identification Data Aggregated over the Satellite-era (MIDAS), which specializes in subtropical stratocumulus (Sc) clouds; sugar, gravel, flowers, and fish (SGFF), which is focused on shallow cloud systems in the tropical trade winds; and the community record of marine low-cloud mesoscale morphology supported by the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) dataset, which is focused on shallow clouds globally. Comparisons of co-occurrence and vertical and geographic distribution show that morphologies are classified in geographically distinct regions; shallow suppressed and deeper aggregated and disorganized cumulus are seen in the tropical trade winds. Shallow Sc types are frequent in subtropical subsidence regions. More vertically developed solid stratus and open- and closed-cell Sc are frequent in the mid-latitude storm track. Differing classifier routines favor noticeably different distributions of equivalent types. Average scene albedo is more strongly correlated with cloud albedo than cloud amount for each morphology. Cloud albedo is strongly correlated with the fraction of optically thin cloud cover. The albedo of each morphology is dependent on latitude and location in the mean anticyclonic wind flow over the North Atlantic. Strong rain rates are associated with middling values of albedo for many cumuliform types, hinting at a complex relationship between the presence of heavily precipitating cores and cloud albedo. The presence of ice at cloud top is associated with higher albedos. For a constant albedo, each morphology displays a distinct set of physical characteristics.