Snow cover variability at Polar Bear Pass, Nunavut

Information on arctic snow covers is relevant for climate and hydrology studies and investigations into the sustainability of both arctic fauna and flora. This study aims to (1) highlight the variability of snow cover at Polar Bear Pass (PBP) at a range of scales: point, local, and regional using bo...

Full description

Bibliographic Details
Published in:Arctic Science
Main Authors: Kathy L. Young, Laura Brown, Claude Labine
Format: Article in Journal/Newspaper
Language:English
French
Published: Canadian Science Publishing 2018
Subjects:
Online Access:https://doi.org/10.1139/as-2017-0016
https://doaj.org/article/80c4b729395045629a9d3b91bb228892
Description
Summary:Information on arctic snow covers is relevant for climate and hydrology studies and investigations into the sustainability of both arctic fauna and flora. This study aims to (1) highlight the variability of snow cover at Polar Bear Pass (PBP) at a range of scales: point, local, and regional using both in situ snow cover measurements and remote sensing imagery products; and (2) consider how snow cover at PBP might change in the future. Terrain-based snow surveys documented the end-of-winter snowpacks over several seasons (2008–2010, 2012–2013), and snowmelt was measured daily at typical terrain types. MODIS products (snow cover) were used to document spatial snow cover variability across PBP and Bathurst and Cornwallis Islands. Due to limited data, no significant difference in snow cover duration can be identified at PBP over the period of record. Locally, end-of-winter snow cover does vary across a range of terrain types with snow depths and densities reflecting polar oasis sites. Aspect remains a defining factor in terms of snow cover variability at PBP. Northern areas of the Pass melt earlier. Regionally, PBP tends to melt out earlier than most of Bathurst Island. In the future, we surmise that snowpacks at PBP will be thinner and disappear earlier.