Coriandrum sativum grown under organic or chemical fertilizer effectively prevents DNA damage: Preliminary phytochemical screening, flavonoid content, ESI (-) FT-ICR MS, in vitro antioxidant and in vivo (mice bone marrow) antimutagenic activity against cyclophosphamide

Objective: To evaluate the influence of fertilization and phenological stages on secondary metabolites production and chemoprotective effects of Coriandrum sativum (C. sativum) L. Methods: The plants were grown under organic or chemical fertilizer, collected at vegetative and flowering development s...

Full description

Bibliographic Details
Published in:Asian Pacific Journal of Tropical Biomedicine
Main Authors: Patricia Carara dos Santos, Jean Carlos Vencioneck Dutra, Juliana Macedo Delarmelina, Lilian Valadares Tose, Wanderson Romão, Claudia Masrouah Jamal, Hildegardo Seibert França, Maria do Carmo Pimentel Batitucci
Format: Article in Journal/Newspaper
Language:English
Published: Wolters Kluwer Medknow Publications 2018
Subjects:
Online Access:https://doi.org/10.4103/2221-1691.235324
https://doaj.org/article/8032f66b68a34b7f8b1ca22b433e0c25
Description
Summary:Objective: To evaluate the influence of fertilization and phenological stages on secondary metabolites production and chemoprotective effects of Coriandrum sativum (C. sativum) L. Methods: The plants were grown under organic or chemical fertilizer, collected at vegetative and flowering development stages and their hydroalcoholic extracts were analyzed by phytochemicals methods, mass spectrometry, antioxidant and antimutagenic assays. Results: All extracts exhibited metabolites such as coumarins, flavonoids and steroids, and mass spectrometry showed similar molecular peaks among the extracts evaluated, suggesting the presence of palmitic and α -linolenic acids. Vegetative C. sativum extract grown under chemical fertilizer showed better antioxidant activity, according to the DPPH assay. Vegetative C. sativum extracts grown under organic and chemical fertilizer were able to effectively reduce micronucleous frequency in the simultaneous and pre-treatment protocols, especially reaching 55.90% of damage reduction in the pre-treatment protocol. Conclusions: These findings suggest that chemical fertilization promotes an increase in the content of flavonoids in C. sativum and, consequently, leads to better antioxidant and antimutagenic activities, as well as reinforces the potential uses of this culinary plant in health promotion and disease prevention.