Construction and use of Plasmodium falciparum phage display libraries to identify host parasite interactions

Abstract Background The development of Plasmodium falciparum within human erythrocytes induces a wide array of changes in the ultrastructure, function and antigenic properties of the host cell. Numerous proteins encoded by the parasite have been shown to interact with the erythrocyte membrane. The i...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Coetzer Theresa L, Lanzillotti Roberto, Lauterbach Sonja B
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2003
Subjects:
Online Access:https://doi.org/10.1186/1475-2875-2-47
https://doaj.org/article/7e58b98249104b20a813e2fab6f01f68
Description
Summary:Abstract Background The development of Plasmodium falciparum within human erythrocytes induces a wide array of changes in the ultrastructure, function and antigenic properties of the host cell. Numerous proteins encoded by the parasite have been shown to interact with the erythrocyte membrane. The identification of new interactions between human erythrocyte and P. falciparum proteins has formed a key area of malaria research. To circumvent the difficulties provided by conventional protein techniques, a novel application of the phage display technology was utilised. Methods P. falciparum phage display libraries were created and biopanned against purified erythrocyte membrane proteins. The identification of interacting and in-frame amino acid sequences was achieved by sequencing parasite cDNA inserts and performing bioinformatic analyses in the PlasmoDB database. Results Following four rounds of biopanning, sequencing and bioinformatic investigations, seven P. falciparum proteins with significant binding specificity toward human erythrocyte spectrin and protein 4.1 were identified. The specificity of these P. falciparum proteins were demonstrated by the marked enrichment of the respective in-frame binding sequences from a fourth round phage display library. Conclusion The construction and biopanning of P. falciparum phage display expression libraries provide a novel approach for the identification of new interactions between the parasite and the erythrocyte membrane.