Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem

Drained thaw lake basins (DTLB's) are the dominant land form of the Arctic Coastal Plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge po...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: D. A. Lipson, D. Zona, T. K. Raab, F. Bozzolo, M. Mauritz, W. C. Oechel
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2012
Subjects:
Ice
Online Access:https://doi.org/10.5194/bg-9-577-2012
https://doaj.org/article/7d56cc2c124145c18988740e27cc2916
Description
Summary:Drained thaw lake basins (DTLB's) are the dominant land form of the Arctic Coastal Plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge polygons produce microtopographic variation in these landscapes, with raised areas such as polygon rims creating more oxic microenvironments. The peat soils in this ecosystem store large amounts of organic carbon which is vulnerable to loss as arctic regions continue to rapidly warm, and so there is great motivation to understand the controls over microbial activity in these complex landscapes. Here we report the effects of experimental flooding, along with seasonal and spatial variation in soil chemistry and microbial activity in a DTLB. The flooding treatment generally mirrored the effects of natural landscape variation in water-table height due to microtopography. The flooded portion of the basin had lower dissolved oxygen, lower oxidation-reduction potential (ORP) and higher pH, as did lower elevation areas throughout the entire basin. Similarly, soil pore water concentrations of organic carbon and aromatic compounds were higher in flooded and low elevation areas. Dissolved ferric iron (Fe(III)) concentrations were higher in low elevation areas and responded to the flooding treatment in low areas, only. The high concentrations of soluble Fe(III) in soil pore water were explained by the presence of siderophores, which were much more concentrated in low elevation areas. All the aforementioned variables were correlated, showing that Fe(III) is solubilized in response to anoxic conditions. Dissolved carbon dioxide (CO 2 ) and methane (CH 4 ) concentrations were higher in low elevation areas, but showed only subtle and/or seasonally dependent effects of flooding. In anaerobic laboratory incubations, more CH 4 was produced by soils from low and flooded areas, whereas anaerobic CO 2 production only responded to flooding in high ...